Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Trop Med Infect Dis ; 8(2)2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2277043

ABSTRACT

Two primary vaccines for coronavirus disease 2019 (COVID-19) have been rolled out in the mass vaccination campaign that started simultaneously with the spread of the delta variant. To explore the vaccines' effect on reducing viral load and disease severity, we conducted a retrospective cohort study in Thai patients aged ≥18 years who were confirmed COVID-19 positive by RT-PCR. Compared to unvaccinated patients, Ct values and the number of severe cases among vaccine regimens were analyzed. Ct values of vaccinated patients were not significantly different from unvaccinated patients, despite an increase of Ct values in a booster dose. The adjusted odd ratio for prevention of delta-related severe diseases was 0.47, 95% CI: 0.30-0.76 and 0.06, 95% CI: 0.01-0.45 after receiving one dose and two doses, respectively. No severe illness was found in booster-vaccinated individuals. Focusing on the vaccine types, one dose of ChAdOx1 nCoV-19 gave significant protection, whereas one dose of CoronaVac did not (0.49, 95% CI: 0.30-0.79, p = 0.003 vs. 0.28, 95% CI: 0.04-2.16, p = 0.223). Two-dose vaccination showed robust protective effects in all subpopulations regardless of vaccine type. Vaccinations with two primary vaccines could not reduce viral load in patients with COVID-19, but could prevent severe illness.

2.
Int J Infect Dis ; 116: 133-137, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1851238

ABSTRACT

BACKGROUND: COVID-19, which is caused by SARS-CoV-2 and its variants, poses an ongoing global threat, particularly in low-immunization coverage regions. Thus, rapid, accurate, and easy-to-perform diagnostic methods are in urgent demand to halt the spread of the virus. OBJECTIVES: We aimed to validate the clinical performance of the FastProof 30 min-TTR SARS-CoV-2 reverse transcription loop-mediated isothermal amplification (RT-LAMP) method using leftover RNA samples extracted from 315 nasopharyngeal swabs. The sensitivity and specificity of RT-LAMP were determined in comparison with reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS: Of 315 nasopharyngeal swabs, viral RNA was detected in 154 samples (48.9%) by RT-PCR assay. Compared with RT-PCR, overall sensitivity and specificity of RT-LAMP were 81.82% (95% CI: 74.81-87.57) and 100% (95% CI: 97.73-100), respectively. A 100% positivity rate was achieved in samples with cycle threshold (Ct) <31 for RT-PCR targeting the ORF1ab gene. However, samples with Ct >31 accounted for false-negative results by RT-LAMP in 28 samples. CONCLUSIONS: RT-LAMP reliably detected viral RNA with high sensitivity and specificity and has potential application for mass screening of patients with acute COVID-19 infection when viral load is high.


Subject(s)
COVID-19 , COVID-19/diagnosis , Colorimetry/methods , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/analysis , RNA, Viral/genetics , Reverse Transcription , SARS-CoV-2/genetics , Sensitivity and Specificity , Thailand/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL